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1 Sets

Sets are the basic objects of mathematics. In fact, they are so basic that there is no simple and precise
de�nition of what a set actually is. For our purposes it su�ces to think of a set as a collection of
objects.

Sets are denoted as a list of their elements: A = {a, b, c} means the set A consists of the elements
a, b, c. The number of elements in a set can be �nite or in�nite. For example, the set of all even
integers {2, 4, 6, . . .} is an in�nite set. We use the notation a ∈ A to say that a is an element of the
set A. Suppose we are given a set X. A is a subset of X if all elements in A are also contained in
X: a ∈ A ⇒ a ∈ X. It is denoted A ⊂ X. The empty set is the set that contains no elements. It is
denoted {} or ∅. Note that any statement about the elements of the empty set is true - since there
are no elements in the empty set.

1.1 Set Operations

The union of two sets A and B is the set consisting of the elements that are in A or in B (or in both).
It is denoted A ∪ B. For example, if A = {1, 2, 3} and B = {2, 3, 4} then A ∪ B = {1, 2, 3, 4}. The
intersection of two sets A and B is the set consisting of the elements that are in A and in B. It is
denoted A ∩ B. For example, if A = {1, 2, 3} and B = {2, 3, 4} then A ∩ B = {2, 3}. Suppose A is a
subset of X. Then the complement of A in X, denoted AC is the set of all elements in X that are
not contained in A: AC = {x ∈ X such that x /∈ A}. The Cartesian Product of two sets A and B,
denoted A× B, is the set of all possible ordered pairs whose �rst component is an element of A and
whose second component is an element of B: A×B = {(a, b) such that a ∈ A and b ∈ B}.

1.2 Finite, Countable, and Uncountable Sets

A set A is set to be �nite if there exists a bijective ("one-to-one and onto") function f mapping from
a set 1, 2, . . . , n to A. This simply means the set has a �nite number of elements - to each element we
can assign exactly one number from 1, . . . , n. A set A is in�nite if it is not �nite. A set A is countable
if there exists a bijective function f mapping from the set of positive integers to A. This means the
set as in�nitely many elements but that theoretically we could count them all (if we had in�nite time
to do so). A set A is uncountable if it is neither �nite nor countable. The most prominent uncountable
set is the set of real numbers R. The set of rational numbers Q and the set of integers Z are both
countable.
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2 Metric Spaces

Sets form the basis of mathematics, but we cannot do much with them in economics unless we de�ne
an additional structure on them - the notion of distance between two elements. If we can measure the
distance between elements in a set, the set is called a metric space. The elements of a metric space
are called points.

De�nition A set X is said to be a metric space if with any two points p and q of X there is
associated a real number d(p, q) called the distance from p to q such that

1. d(p, q) > 0 if p 6= q, and d(p, q) = 0 if p = q;

2. d(p, q) = d(q, p);

3. d(p, q) ≤ d(p, r) + d(r, q) for any r ∈ X

Any function with these three properties is called a distance function or metric.

The most important metric spaces we encounter in economics are the Euclidean spaces Rn, in partic-
ular the real numbers R and the real plane R2. In these spaces, the most commonly used distance is
the Euclidean distance, which is de�ned as

d(x, y) = ||x− y|| =

√√√√ N∑
i=1

(xi − yi)2.

Other distances could be street or grid distances. For example, if you are on the south-west corner
of a city block and you want to go to the north-east corner of the same block, you must travel east
one block and north one block. The grid distance you walked is two blocks, whereas the Euclidean
distance is

√
2 blocks. The grid distance can be de�ned mathematically as

d(x, y) =

N∑
i=1

|xi − yi|.

2.1 Some De�nitions

Equipped with a distance d we can de�ne the following subsets of a metric space X (you can simply
think of d as the Euclidean distance and of X as RN ):

Open and Closed Balls The set B(x, r) = {y ∈ X : d(x, y) < r} is called the open ball B(x, r)
with center x and radius r. The set B(x, r) = {y ∈ X : d(x, y) ≤ r} is called the closed ball
B(x, r) with center x and radius r.In contrast to an open ball, a closed ball contains the points of the
boundary where d(x, y) = r. Sometimes the radius is labeled ε instead of r and then the ball is also
called epsilon ball. Note that in R an open ball is simply an open interval (x − r, x + r), i.e. the set
{y ∈ R : x − r < y < x + r}, and a closed ball is simply a closed interval (x − r, x + r), i.e. the set
{y ∈ R : x− r ≤ y ≤ x+ r}.

Open and Closed Sets A set U ⊂ X is open if ∀ x ∈ U there exists r > 0 such that B(x, r) ⊂ U .
In English: A set is open if for any point x in the set we can �nd a small ball around x that is also
contained in the set. Basically an open set is a set that does not contain its boundary since any ball
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around a point on the boundary will be partially in the set and partially out of the set. For example,
the interval (0, 1) is open in R since for any point x in (0, 1), we can �nd a small interval around x
that is also contained in (0, 1).

A set U ⊂ X is closed if its compliment is open. An equivalent de�nition is that a set is closed i�
∀ sequences {xk} with xk ∈ U ∀ k and {xk} → x, then x ∈ U . Basically a closed set is a set that
contains its boundary (since the complement of that set does not contain the boundary and is thus
open). The de�nition using sequences says that if a sequence {xk} gets arbitrarily close to a point x
while staying in the closed set then the point x also has to be in the set. For example, the interval
[0, 1] is closed in R since its complement, the set (−∞, 0) ∪ (1,∞), is open. Note that a set can be
open (e.g. (0, 1)), closed (e.g. [0, 1]), neither (e.g. (0, 1]) or both ({}, R)!

Problem Show A set U ⊂ X is closed if and only if ∀ sequences {xk} with xk ∈ U ∀ k and {xk} → x,
then x ∈ U .

Bounded Set A set U ⊂ X is bounded if ∃ r > 0 and x ∈ X such that U ⊂ B(x, r).
This is an easy one: A set is bounded if we can �t it into a large enough ball around some point. A set
is not bounded if no matter how large we choose the radius of the ball, the set will not be completely
contained in it.

The next two de�nitions concern the Euclidean space RN only.

Compact Set A set U ⊂ RN is compact if it is closed and bounded. So we can think of a compact
set in RN as a set that �ts into a ball and contains its boundary. In a general metric space, the
de�nition of compact set is di�erent, but we do not have to deal with it here.

Convex Combination & Convex Set Given any �nite number of points {x1, . . . xn}, xi ∈ RN ,
a point z ∈ RN is a convex combination of the points {x1, . . . xn} if ∃ λ ∈ RN+ satisfying

∑N
i=1 λi = 1

such that z =
∑N
i=1 λixi. For example, the convex combinations of two points in R2 form the line

segment connecting the two points.

A set is convex if the convex combination of any two points in the set is also contained in the set.
Another way of stating this is if x1, x2 ∈ X, then αx1 + (1− α)x2 ∈ X, where α ∈ [0, 1]. The second
de�nition says that a set is convex if you can draw a straight line between any two points in the set
that is completely contained in the set. For example, if you pick any two points in the unit disk, the
line connecting them is also contained in the unit disk. On the unit circle that is not the case: (1, 0)
and (−1, 0) are both on the unit circle, but the line connecting them goes through (0, 0), which is not
on the unit circle. The unit disc is a convex set in R2, while the unit circle is not.

Problem (Jensen's Inequality) Let f : RN → R. We de�ne f to be a convex function if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), 0 ≤ λ ≤ 1

for every x, y ∈ RN . Show that f is convex if and only if

f

(
N∑
i=1

λixi

)
≤

N∑
i=1

λif(xi)

whenever λi ≥ 0 for all i and
∑N
i=1 λi = 1.
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Some Facts ...to be proved as exercises.

1. Open balls are open sets.

2. Any union of open sets is open.

3. The �nite intersection of open sets is open.

4. Any intersection of closed sets is closed.

5. The �nite union of closed sets is closed.

3 Sequences

De�nition A sequence is an assignment of the elements in some set to the natural numbers. A
sequence is denoted as a set with elements labeled from zero (or one) to a �nite number or in�nity:

Finite sequence: {xn}Nn=0 = {x1, x2, . . . , xN}

In�nite sequence: {xn}∞n=0 = {x1, x2, . . .}

Examples:
{xn}∞n=0 = {1, 1, 2, 3, 5, 8, . . .}
{xn}∞n=0 = {1, 0, 1, 0, . . .}

{xn}∞n=0 =

{
1,

1

2
,
1

3
,
1

4
, . . .

}
Sequences can also be de�ned as functions of n.

Examples:
a(n) = n2 ⇒ {xn}∞n=0 = {0, 1, 4, 16, . . . }

b(n) =
n

n+ 1
⇒ {xn}∞n=0 =

{
0,

1

2
,
2

3
,
3

4
, . . .

}
c(n) =

√
ln(n)⇒ {xn}∞n=1 =

{√
ln(1),

√
ln(2), . . .

}
d(n) =

en

n
⇒ {xn}∞n=1 =

{
e,
e2

2
,
e3

3
, . . .

}

Subsequences Given a sequence {xn}, consider the sequence of positive integers {nk} such that
n1 < n2 < n3 < . . .. Then the sequence {xnk

} is called a subsequence of {xn}.

Example: Let {xn} = { 1n} and {nk} be the sequence of prime numbers. Then {xnk
} = {1, 13 ,

1
5 , . . .}.

3.1 Properties of Sequences in R

We �rst look at sequences in one dimension, i.e. sequences in R. The properties and de�nitions
generalize easily to sequences of higher dimensions, i.e. sequences in RN , since a sequence in RN can
be essentially viewed as a vector of N sequences in R. All of these de�nitions also apply to general
metric spaces.
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Boundedness A sequence {xn}∞n=0 in R is bounded above if there exists a number Ma such that all
elements of the sequence are less thanMa: xn ≤Ma ∀n ∈ N. We callMa an upper bound. A sequence
{xn}∞n=0 in R is bounded below if there exists a number Mb such that all elements of the sequence are
greater than Mb: xn ≥ Mb ∀n ∈ N. We call Mb a lower bound. A sequence in R is bounded if it is
bounded both above and below. The smallest number Ma which is an upper bound of a sequence is
called the least upper bound or supremum, while the largest number Mb which is a lower bound of the
sequence is called the greatest lower bound or in�mum.

Example: The sequence
{xn}∞n=1 = {0, 1, 0, 2, 0, 3, 0, 4, . . . }

has zero as its greatest lower bound and has no upper bound. Therefore, the sequence is bounded
below, but is not bounded since it is not bounded above.

Increasing and Decreasing A sequence is

1. Monotonically increasing or non-decreasing i� xn ≤ xn+1.

2. Strictly monotonically increasing i� xn < xn+1.

3. Monotonically decreasing or non-increasing i� xn ≥ xn+1.

4. Strictly monotonically decreasing i� xn > xn+1.

5. Monotone if it is either monotonically increasing or decreasing.

3.2 Limits, Convergence, and Divergence

De�nition A sequence {xn}∞n=1 in R has a limit L ∈ R i� for each ε > 0, ∃ K ∈ Z++ such that if
n ≥ K, then |xn − L| < ε. We write {xn}∞n=1 → L or limn→∞ xn = L.
In other words, there must be a number K such that all elements after the Kth element must be in
the epsilon ball Bε(L). We say a sequence converges if it has a limit. If it has no limit, then we say
it diverges.

Example: Prove the sequence {xn}∞i=1 =
{
1, 12 ,

1
3 , . . .

}
converges.

Proof: It su�ces to show the sequence has a limit. Consider L = 0. We must show that for each
ε > 0, ∃ K ∈ Z++ such that if n ≥ K, then |xn| < ε.

|xn| < ε⇒ | 1
n
| < ε⇒ 1

n
< ε⇒ 1 < nε⇒ n >

1

ε
.

Choose ε > 0. Then any integer K > 1
ε works. QED

To see that K > 1
ε actually works, just let ε di�erent numbers. For example, let ε = 1. Then our

chosen K must be greater than 1. From our sequence, we can easily see that any number 1
n where

n > 1 is going to be less than ε = 1. If ε = 1
2 , then our K must be greater than 2. We can see that

for every n > 2, 1
n < ε = 1

2 .

Some Facts ...to be proved as exercises.

1. A sequence can only have at most one limit.

2. If {xn}∞n=1 → x, and {yn}∞n=1 → y, then {xn + yn}∞n=1 → x+ y.
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3. If {xn}∞n=1 → x, and {yn}∞n=1 → y, then {xnyn}∞n=1 → xy.

4. If {xn}∞n=1 → x, xn 6= 0 for any n, and x 6= 0, then { 1
xn
}∞n=1 → 1

x .

5. Monotone Convergence Theorem: Let {xn} be a bounded and monotone sequence in R. Then
{xn} converges. (Proof not on the solution sheet but on Wikipedia.)

6. Bolzano-Weierstrass Theorem: Every bounded sequence in R has a convergent subsequence.
(Hint: Show that every bounded sequence has a monotone subsequence. Then apply the mono-
tone convergence theorem.)

3.3 Sequences in RN

A sequence {xn}∞n=0 in RN can be essentially viewed as a vector of N sequences in R:

{xn}∞n=0 =

 {(x1)n}∞n=0
...

{(xN )n}∞n=0


Let's see how some of the properties above extend to multidimensional sequences: A sequence {xn}∞n=0

in RN is bounded if there exists a number M such that all elements of the sequence are less than
distance M from the origin, i.e. d(xn, 0) ≤ M∀n ∈ N. This is equivalent to the statement that each
of the component sequences {(x1)n}∞n=0 , . . . , {(xN )n}∞n=0 is bounded. A sequence {xn}∞n=1 in RN has
a limit L ∈ RN i� for each ε > 0, ∃ K ∈ Z++ such that if n ≥ K, then d(xn, L) < ε. In other words,
there must be a number K such that all elements after the Kth element must be in the epsilon ball
Bε(L).

Theorem A sequence of vectors in RN converges if and only if all the component sequences converge
in R.

Proof: Exercise.

Example Consider the sequence {xn} = {( 1n , 0)} in R2. Then {xn} → (0, 0).

4 Continuity

Here we revisit the de�nitions of limit of a function and continuity. In the Single Variable Calculus
notes, we considered functions mapping from R to R. Here we generalize the de�nitions to functions
mapping from one metric space to another. The only di�erence is that instead of measuring distances
by absolute values we now use a general metric d.
In the following, let X and Y be two metric spaces endowed with metrics dX and dY respectively, and
let f be a function from X to Y .

Limit We write f(x)→ q as x→ p or

lim
x→p

f(x) = q

if for every ε > 0 we can �nd δ > 0 such that dY (f(x), q) < ε for all x for which dX(x, p) < δ. q is
called the limit of f at the point p.
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Continuity The function f is called continuous at the point p ∈ X if

lim
x→p

f(x) = f(p).

This is equivalent to saying that for every ε > 0 we can �nd δ > 0 such that dY (f(x), f(p)) < ε for all
x for which dX(x, p) < δ. f is called continuous if it is continuous at every point of X.

Two Theorems

1. Let X be a compact subset of R and let f be a continuous function from R to R. Then f(X)
is compact. (You'll need more than we cover here to prove this, so don't try unless you know
what you're doing.)

2. Let X be a compact subset of R and let f be a continuous function from R to R. Let Ma be
the least upper bound of f(X) and let Mb be the greatest lower bound of f(X). Then there are
points p, q in X such that f(p) = Ma and f(q) = Mb. This is the Weierstrass Theorem we'll
use in optimization.
Proof: f(X) is compact by theorem 1, therefore closed and bounded. By de�nition Ma lies on
the boundary of f(X). Since closed sets contains their boundary points, Ma has to actually be
in f(X). That means there exists some point p in X such that f(p) =Ma. Analogously for Mb.
QED.
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5 Homework

State whether the following sets are open, closed, neither, or both:

1. {(x, y) : −1 < x < 1, y = 0}

2. {(x, y) : x, y are integers}

3. {(x, y) : x+ y = 1}

4. {(x, y) : x+ y < 1}

5. {(x, y) : x = 0 or y = 0}

Prove the following:

1. Open balls are open sets

2. Any union of open sets is open

3. The �nite intersection of open sets is open

4. Any intersection of closed sets is closed

5. The �nite union of closed sets is closed

6. Let f and g be functions from Rk to Rm which are continuous at x. Then h = f−g is continuous
at x.

7. Let f and g be functions from Rk to Rm which are continuous at x. Then h = fg is continuous
at x.

Find the greatest lower bound and the least upper bound of the following sequences. Also, prove
whether they are convergent or divergent:

1. {xn}∞i=1 =
{

1
2 ,

2
3 ,

3
4 ,

4
5 , . . .

}
2. {xn}∞i=1 = {−1, 1,−1, 1, . . . }

3. {xn}∞i=1 =
{
− 1

2 ,
2
3 ,−

3
4 ,

4
5 ,−

5
6 , . . .

}
Prove the following:

1. A sequence can only have at most one limit.

2. If {xn}∞n=1 → x and {yn}∞n=1 → y, then {xn + yn}∞n=1 = x+ y.

3. A sequence of vectors in RN converges i� all the component sequences converge in R.

4. The sequence {xn}∞n=1 =
{
(1, 12 ), (1,

1
3 ), (1,

1
4 ), . . .

}
converges to (1, 0).

5. The sequence {xn}∞n=1 =
{
( 12 ,

1
2 ), (

2
3 ,

1
3 ), (

3
4 ,

1
4 ), . . .

}
converges to (1, 0).
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